Abstract

The present work consists in an experimental investigation of the flow issuing from a bent chimney over a downstream obstacle. Our purpose is to explore the resulting flow field and its different characterizing features. These features were captured by means of the Particle Image Velocimetry technique. A numerical simulation of the problem has also been carried out and validated after comparison of the corresponding results to the experimental data. A good level of agreement was achieved between the experiments and the calculations. Then, we tried to upgrade our model by adopting large (real) scale dimensions. Our purpose consisted mainly in the observation and evaluation of the behavior of the incoming flow in presence of a double tandem obstacle. In a second step, we proposed to increase the number of the placed obstacles to four. The results given by the three-dimensional model are likely to highlight the dynamic features of the established field as well as the resulting mass transfer. Finally, we tried to evaluate the effect of further parameters on the characterizing features of the resulting flow filed such as the velocity ratio, the obstacles’ gap, the arrangement of the obstacles and the obstacles’ geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.