Abstract

In this paper, we describe a biosensing instrument based on our previously developed photonic resonator absorption microscope (PRAM) that incorporates autofocus, digital representation of the gold nanoparticle (AuNP) accumulation, and the ability to gather time-series image sequences of AuNP attachment and detachment from the photonic crystal (PC) surface. The combined capabilities are used to fully automate PRAM image collection during biomolecular assays to enable tiling of PRAM images to provide millimeter-scale field of view. The instrument can also gather PRAM “movies” that enables digital showcasing and dynamic counting AuNPs as they arrive and depart from the PC surface. We utilize the capabilities in the context of two biomolecular assays for detection of protein biomarkers in a conventional AuNP-tagged sandwich format. Utilizing dynamic counting of AuNP attachment and detachment events during the assay we present a detection for microRNA-375 (miRNA-375) down to 1 aM with a 10-min, room temperature, enzyme-free approach, while revealing characteristics of the binding-rate and unbinding-rate of the biomolecular interactions. Our instrument can potentially find broad applications in multiplexed point-of-care diagnostic testing, and as a general-purpose tool for quantitative characterization of biomolecular binding kinetics with single-molecule resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.