Abstract

This paper presents a technique for assessing the volumetric errors on a five-axis machine tool for motion involving two linear axes and one rotary axis at selected feed rates using data from two sources. The first source of data is obtained through a programmed end point constraint procedure with measurement of the 3D volumetric positioning errors between a point on the tool holder and another fixed to the machine table reference frame. The tests involve maintaining the nominal coincidence of these two points whilst exercising the three axes. The second source of data is the position feedback signal from the encoder provided by the machine controller. Tests were carried out at low and high feed rates to evaluate the effect of geometric and dynamic errors. Polynomial functions are used to represent and then predict the geometric errors. The predicted geometric errors are then added to the dynamic errors provided by the servo errors from position feedback signals and propagated to the tool centre point and are compared with the measured volumetric errors. It shows that the influence of the geometric errors are dominant at low feed, whereas the effects of the servo errors of the linear axes become dominant as the feed increases, reaching 80% of the total error at a feed of 10,000 mm/min.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call