Abstract

Buoyancy Can Riser Tensioner (BCRT) systems provide tension to the Top Tensioned Riser (TTR) systems. The main benefit of employing BCRT is that it can minimize the interaction between the floating platform and riser system. The possible lateral impact and dynamic loads which may occur between the SPAR hull and BCRT are minimized by placing the so-called Compliant Guides (CGs) at the sliding interfaces. The CGs are designed to allow relatively free sliding of the BCRT in the riser axial direction, while preventing/minimizing lateral impact loads by providing lateral compliance. CGs are made of high stiffness and abrasion resistant material, such as elastomer materials. Objective of this study is to develop a numerical capability and analysis procedure to evaluate the spar-riser interaction mechanism and their effects on spar motion and riser response. The newly developed frictional interface element is an essential component of an FE model for the time simulation of the coupled motions of SPAR and riser systems. The algorithm can be used to investigate the dynamic and frictional interaction between the SPAR and BCRTs, such as the friction’s impact on the SPAR motion and riser stresses, and the dynamic load/wear requirements on the CGs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call