Abstract
Multi-Processors System-on-Chip (MPSoCs) have emerged as the enabler technology for new computational paradigms such as Internet-of-Things (IoT) and Machine Learning. Network-on-Chip (NoC) communication paradigm has been adopted in several commercial MPSoCs as an effective solution for mitigating the communication bottleneck. The widespread deployment of such MPSoCs and their utilization in critical and sensitive applications, turns security a key requirement. However, the integration of security into MPSoCs is challenging. The growing complexity and high hyper-connectivity to external networks expose MPSoC to Malware infection and code injection attacks. Isolation of tasks to manage the ever-changing and strict mixed-criticality MPSoC operation is mandatory. Hardware-based firewalls are an effective protection technique to mitigate attacks to MPSoCs. However, the fast reconfiguration of these firewalls impose a huge performance degradation, prohibitive for critical applications. To this end, this paper proposes a lightweight broadcasting mechanism for firewall reconfiguration in NoC-based MPSoC. Our solution supports efficient and secure creation of dynamic security zones in the MPSoC through the communication management while avoiding deadlocks. Results show that our approach decreases the security reconfiguration process by a factor of 7.5 on average when compared to the state of the art approaches, while imposing negligible area overhead.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.