Abstract

Torpedoes play an irreplaceable role in naval warfare; therefore, it is significant to study the dynamic response of the direct navigation of torpedoes. In order to study the dynamic response of torpedoes under different Munk moment coefficients, the dynamic equation of torpedoes is established based on the momentum theorem and the momentum moment theorem. The linear motion mathematical model of torpedoes is obtained. The relationship between the torpedo and the Munk moment coefficient is derived. The straight-line motion model of the torpedo under different Munk moments is established, and the dynamic properties of the space motion of the torpedo are analyzed. It is found that the Munk moment coefficient increase will lead to an increase in the deflection of the torpedo’s direct motion on each degree of freedom, and the Munk moment coefficient is related to the additional mass matrix. During the design of the torpedo, the added mass should be reduced by changing the shape of the torpedo as much as possible so as to reduce the pitch moment, yaw, and roll moments of the torpedo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call