Abstract

Cable-stayed bridge is one of the most popular bridges in the world and is always the focus in engineering field. In this work, the in-plane free vibration of a multi-cable-stayed beam, which exists in cable-stayed bridge, has been studied. The general expressions are conducted for the multi-cable-stayed beam based on basic principle of the transfer matrix method. A double-cable-stayed beam is taken as an example and solved according to governing differential equations considering axial and transverse vibrations of cables and beam. Then, numerical analyses are implemented based on carbon fiber-reinforced polymer cables. The dynamic characteristics including natural frequencies and mode shapes are investigated and compared with those obtained by finite element model. Meanwhile, parametric analyses are carried out in detail aiming to explore the effects of parameters on natural frequencies of a two-cable-stayed beam. Finally, some interesting phenomena are revealed and a few interesting conclusions are also drawn.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call