Abstract

Based on the scanning electron microscope (SEM) observations, it is confirmed that the nacre is composed of aragonite crystals and organic matrix with interlaced arrangement, showing ordered “brick-mortar” structure. The dynamic analysis of preferential orientation of aragonite crystals in the nacre from the abalone (Haliotis diverscolor supertexta) with different shell ages is systematically investigated using X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM). Experiments reveal that, in the nacre from the juvenile mollusk shell, there exist three kinds of orientations of aragonite crystals: (113), (002) and (012). However, along with the growing of the mollusk shell, the intensity of (012) and (113) becomes weak, and the (002) becomes the preferred crystal orientation of aragonite in the nacre from the adult mollusk shell, which means that the c axis of aragonite crystals is perpendicular to the nacreous layers. The results obtained show that the nacre possesses a highly ordered structure at the micrometer/nanometer multiscale levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call