Abstract

This study propose a new nonlinear model for offset printing press gear-cylinder-bearing system by the lumped parameter approach. The multi-DOF model consists of helical gear pairs and spur gear pairs with time-varying meshing stiffness. Bearing and shaft flexibilities are include in the model as well. The equations of motion are obtained by Darren Bell principle and Runge-Kutta numerical method is used to slove the equations of motion. The results show that meshing stiffness and bearing stiffness significantly affect critical speed, vibration acceleration and meshing force. Multi-body dynamics software are applied to compare with lumped parameter model. The results show that there are many similarities in different aspects. Results of experimental study on offset printing press are also presented for validation of different models. After Discrete Fourier Transform, the graphics display that acceleration peaks frequencies are an integer multiple of the gear mesh frequency. It demonstrate that mechanical vibration is mainly from gear transmission system at high printing speed and gear transmission system lead to nonlinear vibration. This work provide a foundation for further improvement of the dynamics of gear system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call