Abstract

Due to the complex working environment, gear systems always suffer from multiple excitations in actual engineering. This paper concerns the frequency response characteristics of a nonlinear time-varying spur gear system subjected to multi-frequency excitation. Firstly, a single degree-of-freedom gear pair model is established with consideration of the gear backlash, time-varying mesh stiffness and multiple harmonic excitations. Then, using the multiple time scales method, a comprehensive theoretical study is conducted to analyze various resonant cases including primary, parametric and combination resonances. Besides, parametric studies are accomplished to reveal the effects of the multi-frequency excitation on gear dynamics and to provide some useful references for reducing the vibration level. With the help of the fifth-order Runge–Kutta method, the numerical results are obtained to verify the validity of the analytical solutions and to emphasize the significances of the multi-frequency excitation. In addition, a comparison is performed between the numerical results and the published experimental results to validate the proposed gear model. Results show that the presence of the multi-frequency excitation will introduce the interaction between different harmonic excitations, which significantly affects the nonlinear vibration characteristics of a spur gear system. The proposed gear model with multi-frequency excitation could be more reliable and universal than that with single-frequency excitation. In addition, the results of parametric study could provide some suggestions to designers and researchers attempting to obtain desirable dynamic behaviors of a gear system subjected to multi-frequency excitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.