Abstract

Efficient dynamic analysis of mooring lines and risers is necessary for deepwater floating systems that typically consist of a number of mooring lines and risers. In deepwater, the interactions between the floater motions and the large number of risers and mooring lines become significant and must be considered for accurate prediction of floater motions as well as line dynamics. Time-domain coupled dynamic analysis procedures have been proposed which can account for the coupling effects and consider most of the nonlinearities present in the problem. These methods have been shown to give more accurate results compared to traditional de-coupled analysis methods although they tend to be computationally more expensive. If the system has a large number of mooring lines and risers, it becomes very difficult and impractical to perform time domain coupled analysis. A number of efficient methodologies have therefore been proposed in the past to balance the accuracy of results with computational efficiency. Such methods include the frequency domain approach, combination of frequency and time domain methods, and combination of coupled and uncoupled analysis methodologies. Enhanced de-coupled dynamic analysis is an efficient method and is similar to the traditional de-coupled dynamic analysis method except that the floater motions are computed by coupled analysis considering a coarse finite element model of the mooring lines. In this paper, dynamic analysis of mooring lines for a deep water classical spar floater under random waves is performed by using the enhanced de-coupled dynamic analysis method and the response statistics are compared with results obtained from coupled dynamic analysis. The spar is modeled as a rigid body with six degrees-of-freedom and the mooring lines are modeled as finite element assemblage of elastic rods. All major non-linearities and the dynamic interaction between spar and its mooring lines are considered while determining the tension time histories. Hinge connection is assumed at the fairleads. At every time step of the integration of equations of motion of the spar, a series of nonlinear dynamic analyses of the mooring lines is performed using a subcycling technique. From the analyses, it is found that the enhanced de-coupled dynamic analysis provides results comparable in accuracy with the results obtained from coupled dynamic analysis in terms of predicting the response statistics, but requires only one third of the computational time. Therefore, enhanced de-coupled dynamic analysis can be used for accurate prediction of mooring line dynamics for deep water floating systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.