Abstract

In this paper, the dynamic analysis problem is considered for a new class of Markovian jumping impulsive stochastic Cohen–Grossberg neural networks (CGNNs) with discrete interval and distributed delays. The parameter uncertainties are assumed to be norm bounded and the discrete delay is assumed to be time-varying and belonging to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the Lyapunov–Krasovskii functional and stochastic stability theory, delay-interval dependent stability criteria are obtained in terms of linear matrix inequalities. Some asymptotic stability criteria are formulated by means of the feasibility of a linear matrix inequality (LMI), which can be easily calculated by LMI Toolbox in Matlab. A numerical example is provided to show that the proposed results significantly improve the allowable upper bounds of delays over some existing results in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.