Abstract

This paper aims to study the dynamics of the single-degree-of-freedom magnetic spring-based oscillator system. The proposed oscillator system contains a nonmagnetic shaft, a floating permanent magnet (PM), and two fixed permanent magnets (PMs). All PMs are placed in such a way that they can repel each other. At first, the proposed system's magnetic properties and magnetic restoring force are studied. Experimental and numerical analyses have been carried out to validate the analytical investigation of the magnetic restoring force. The linear and nonlinear coefficients of the oscillator system are analysed from the magnetic restoring force. Moreover, how the gravitational force affects the equilibrium position is studied by varying the height of the oscillator. The magnetic restoring forces for different oscillator heights are also analysed. In addition, the system dynamics, such as damping ratio, eigenvalues and natural frequencies of the oscillator system, are investigated with and without electromechanical coupling. Finally, the proposed system's energy generation capacity is examined using electromechanical coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.