Abstract

An algorithm for a parallelized coupled model based on finite element method (FEM), boundary element method (BEM), and scaled boundary FEM (SBFEM) for harmonic and transient dynamic response of large-scale 2D structures embedded in or on layered soil media is presented. The BEM and SBFEM are used for modelling the dynamic response of the unbounded media. The standard FEM is used for modelling the finite region and the embedded structure. The objective of the development of this parallelized coupled model is to use the power of high performance computing, and to take into account the advantages and evade the disadvantages of the above mentioned numerical methods for modelling of the unbounded media in soil-structure interaction (SSI) systems. The development of the parallel algorithm for this model is essential for solving arbitrarily shaped large-scale SSI problems, which cannot be solved within reasonable elapsed times by a serial algorithm. The efficiency of the proposed parallel algorithm and the validity of the coupled model are shown by means of three numerical examples, indicating the excellent accuracy and applicability of the parallel algorithm with considerable time-savings in large-scale problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.