Abstract
Feed-forward neural network is employed to model the nonlinear oil-film force database of a finite-length hydrodynamic journal bearing, which is constructed by continuous transformation of Reynolds equation. Neural network models trained are utilized to investigate motion characteristics of a rigid unbalanced rotor supported on elliptical bearings in 300 MW steam turbine generator set. There exist various forms of periodic, quasi-periodic and chaotic motions at different rotating speeds. Periodic doubling bifurcation and quasi-periodic routes to chaos may be found when rotating speed is used as the control parameter. Computational results show that there exist similar motion behaviors between neural networks and numerical method. It is available for neural network models of oil-film forces to research nonlinear dynamic problems of rotating machinery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.