Abstract

Neural networks (NNs) have emerged as a powerful illustrative diagram for the brain. Unveiling the mechanism of neural-dynamic evolution is one of the crucial steps toward understanding how the brain works and evolves. Inspired by the universal existence of impulses in many real systems, this paper formulates a type of hybrid NNs (HNNs) with impulses, time delays, and interval uncertainties, and studies its global dynamic evolution by a robust interval analysis. The HNNs incorporate both continuous-time implementation and impulsive jump in mutual activations, where time delays and interval uncertainties are represented simultaneously. By constructing a Banach contraction mapping, the existence and uniqueness of the equilibrium of the HNN model are proved and analyzed in detail. Based on nonsmooth Lyapunov functions and delayed impulsive differential equations, new criteria are derived for ensuring the global robust exponential stability of the HNNs. Convergence analysis together with illustrative examples show the effectiveness of the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.