Abstract

ABSTRACT The coupled dynamic analysis of a hexagon-shaped Frustum Tension-leg platform (FTLP) combined with wave energy converters (WECs) supporting a 5-MW wind turbine is performed to analyse the dynamic responses of the hybrid system. The responses of the FTLP are investigated using the time-domain numerical simulation for the operational sea-states of the wind turbine. The FTLP is integrated with an array of point absorber-type WECs in a circular pattern to analyse the influence of the WECs on the dynamic responses of the floating platform. The aero-servo-hydro-elastic simulation tool FAST and hydrodynamic simulation tool WAMIT is used to study the rigid body motions of the system. The study observes higher rigid body motions in the surge, sway and yaw directions for the hybrid system. Further, the investigation is performed for the forces and moments developed at the base of the wind turbine and the tension developed on mooring cables to understand the integrity and stability of the hybrid platform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call