Abstract

In this paper, dynamic behavior and the resonance frequencies of flexural vibration modes of an atomic force microscope cantilever with sidewall probe immersed in liquid to surface stiffness variations have been investigated and a closed-form expression is derived. Using numerical analysis, the flexural resonance frequencies of microcantilever immersed in liquid are calculated and the results are compared with the air environment. Then, the effect of sidewall length and normal stiffness on the frequency is investigated. Moreover, the surface-coupled effect between the cantilever and simple surface when the cantilever is close to the surface is considered and its effect on the quality factors of the first to fourth modes is studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call