Abstract

The problem of transient dynamics of highly flexible three-dimensional space-curved beams, undergoing large rotations and stretches, is treated. The case of conservative force loading, which may also lead to configuration-dependent moments on the beam, is considered. Using the three parameters associated with a conformal rotation vector representation of finite rotations, a well-defined Hamilton functional is established for the flexible beam undergoing finite rotations and stretches. This is shown to lead to a symmetric tangent stiffness matrix at all times. In the present total Langrangian description of motion, the mass-matrix of a finite element depends linearly on the linear accelerations, but nonlinearly on the rotation parameters and attendant accelerations; the stiffness matrix depends nonlinearly on the deformation; and an ‘apparent’ damping matrix depends nonlinearly on the rotations and attendant velocities. A Newmark time-integration scheme is used to integrate the semi-discrete finite element equations in time. Several examples of transient dynamic response of highly flexible beam-like structures, including those in free flight, are presented to illustrate the validity of the theoretical methodology developed in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.