Abstract

This paper presents finite element modeling of tapered fiber-reinforced polymer (FRP) poles in ABAQUS for dynamic analysis. Modal analysis and transient dynamic analysis are presented in order to evaluate the effect of fiber orientation, taper ratio, number of layers and lamina thickness on the dynamic properties of tapered poles. Trends observed from the parametric studies on the analyses of the FRP poles are enumerated. In addition, the effect of rectangular dynamic excitations on the overall response of the FRP poles is presented encapsulating impulsive loadings that may occur due to wind gusts or loss of cable tension supported by the FRP poles. Result shows that the fundamental frequency of the poles decreased as the fiber-orientation increased up to 60 degrees. In addition, the fundamental frequency of the poles increased as the number of layers increased. No significant difference was observed in natural frequency of the poles when varying the lamina thickness without changing the overall laminate thickness. The fundamental frequency of the FRP poles decreased by 10% as the taper ratio increased from 0.4 to 1. Transient dynamic analysis showed that FRP poles with higher fiber orientation angle had the larger maximum tip deflection. However, only small differences were observed when the deflections are normalized as the ratio of the maximum dynamic deformation to the maximum static deformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call