Abstract

We describe here a cytofluorometric technology for the characterization of decision, execution, and degradation steps of neuronal apoptosis. Multiparametric flow cytometry was developed and combined to detailed fluorescence microscopy observations to establish the chronology and hierarchy of death-related events: neuron morphological changes, mitochondrial transmembrane potential (DeltaPsi(m)) collapse, caspase-3 and -9 activation, phosphatidyl-serine exposure, nuclear dismantling and final plasma membrane permeabilization. Moreover, we developed a reliable real-time flow cytometric monitoring of DeltaPsi(m) and plasma membrane integrity in response to neurotoxic insults including MPTP treatment. Taking advantage of recently developed specific fluorescent probes and a third generation pan-caspase inhibitor, this integrated approach will be pertinent to study the cell biology of neuronal apoptosis and to characterize new neuro-toxic/protective molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call