Abstract
Shared mooring lines have demonstrated their effectiveness in reducing the installation costs of floating offshore wind farms by minimizing the requirement for multiple anchors. However, this innovation has also brought complex restoring properties and a greater tendency towards resonance. To tackle this challenge, this research presents a novel approach for shared mooring systems, implemented in a 2 × 2 orthogonal wind farm arrangement featuring 5 MW wind turbines installed on the Barge platform. Through the application of FAST and AQWA, a comparative analysis is conducted juxtaposing the original mooring (OM) and three new mooring models, namely buoy mooring (BM), clump weight mooring (WM) and buoy clump weight mooring (BWM). A comprehensive examination is carried out to assess the impact of on platform and mooring characteristics. The results show that the BM can effectively reduce the platform's surge and sway response, and that the mooring tension and laid length decrease as the net buoyancy increases. The WM increases the response amplitude at the yaw direction. The BWM with link buoys helps to improve the dynamic response of the platform and increases the length of the mooring laid. This analysis provides valuable insights for the design of floating wind farms incorporating shared mooring systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.