Abstract

A numerical solution for the dynamic responses of a train-bridge interaction system subjected to multi-support seismic loads was studied. The train vehicle was modeled by the rigid-body dynamics method, and the bridge was modeled by the finite element method. The vertical and lateral wheel-rail interaction forces were defined according to the wheel-rail corresponding assumption and the simplified Kalker creep theory. Three-dimensional seismic accelerations were incorporated using the large mass method. In a case study, the dynamic responses were simulated for a high-speed train traversing a steel truss cable-stayed bridge with different seismic intensities and different train speeds, and train safety was evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.