Abstract

This article discusses the dynamics of a ten-link tooth-lever differential transmission mechanism. The force analysis of the transmission mechanism is given in order to find the dependence for determining the reaction in kinematic pairs and the balancing moment of the pair of forces and to show some features of the tooth-lever transmission mechanism. The force calculation was carried out taking into account the accelerated movement of links since their acceleration in modern high-speed machines is very significant. To obtain a more accurate concept of the external forces and moments loading the transmission mechanism in the accelerated movement of the links, the dynamics of the transient process of roller technological machines was considered. Cases of feeding the processed material were considered both from the side of the intermediate gears and from the side opposite to the parasitic gears. Dependencies were obtained to determine the force characteristics of this mechanism. Cases of pressure unloading and overloading on the processed material from the side of the free shaft, depending on the location of the transmission mechanism are shown. The dependence of the reaction force of intermediate gears on their own axes of rotation on the angle between the levers is shown. With an increase in the angle between the levers, the reaction of the intermediate gears on the axis of rotation increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.