Abstract
This paper is interested in the dynamics of a horizontal pipe conveying a two-phase fluid (gas and liquid), which is a problem of great regard for the oil and gas industry. The purpose of this paper is twofold. First, it introduces dimensionless coefficients that carry the information of the two-phase flow, allowing the dynamic equation to be written analogously to the equation of a single-phase fluid. Second, a probabilistic model is developed considering uncertainties in three flow parameters, (1) the flow profile factor, (2) the slip ratio and (3) the vapour quality, in order to analyse the influence of these parameters on the dynamic stability and on the frequency response of the system. The pipe is described using the linear elastic Euler–Bernoulli beam theory, and the fluid is modelled taking into account a constant tangential velocity of the flow. The coupled system is discretized by means of the finite element method, and the stochastic problem is approximated using the Monte Carlo method. The flow parameters affect greatly the system response, and different values of the critical flow velocity are obtained, depending on the level of uncertainty of the parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of the Brazilian Society of Mechanical Sciences and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.