Abstract

A novel geared infinitely variable transmission (IVT) that can generate a continuous output-to-input speed ratio from zero to a certain value is studied for vehicle and wind turbine applications. The principle of changing the output-to-input speed ratio is to use a crank-slider mechanism; the output-to-input speed ratio is controlled by adjusting the crank length. Since the crank-slider mechanism can lead to relatively large variation of the output-to-input speed ratio in one rotation of the crank, the instantaneous input and output speeds and accelerations have variations and the corresponding forces exerted on each part of the IVT can have obvious changes in one rotation of the crank. Since forces on some parts of the IVT are critical and can cause failure of the IVT, a dynamic analysis of the IVT is necessary to simulate the input and output speeds and accelerations. A method that combines Lagrangian dynamics and Newtonian dynamics is developed in this work to analyze the motion of the IVT. The dynamic analysis results can be used to evaluate the design of the IVT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.