Abstract

A moored spar platform, equipped with various instruments, serves as a crucial tool in hydrological monitoring. However, conducting dynamic analyses of a single spar that endures wind and current requires significant amount of computational time. To address this challenge, this study proposes an efficient surrogate model to represent fluid loads. A database is established to capture the relationship between fluid loads, spar displacements and uniform currents based on a numerical model of the spar. Subsequently, an artificial neural network method is employed to construct the surrogate model. Finally, the surrogate model is integrated with a numerical model of the cable, developed using the lumped mass method, to create a coupled model of the moored spar. The dynamic responses of this coupled model align closely with those obtained from the purely numerical model, demonstrating the efficacy of the surrogate model in capturing fluid loads on the spar. In addition to the surrogate model generation approach, this research provides an efficient method to couple the surrogate model with the numerical model in dynamic analysis of floating systems in uniform currents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call