Abstract

In this paper, a delayed fractional-order SIR (susceptible, infected, and removed) epidemic model with saturated incidence and treatment functions is presented. Firstly, the non-negativity and boundedness of solutions of the proposed model are proved. Next, some sufficient conditions are established to ensure the local asymptotic stability of the disease-free equilibrium point [Formula: see text] and the endemic equilibrium point [Formula: see text] for any delay. Meanwhile, global asymptotic stability of the endemic equilibrium point [Formula: see text] is investigated by constructing a suitable Lyapunov function. Some sufficient conditions are established for the global asymptotic stability of this endemic equilibrium point. Finally, some numerical simulations are illustrated to verify the correctness of the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.