Abstract

A combined spiral bevel gear and planetary gear set was designed for bucket elevators to reduce the system’s complexity and improve the system’s efficiency. The dynamic model of a combined spiral bevel gear and a 2K-H planetary gear train was developed by using the lumped mass method, where the time-varying mesh stiffness and comprehensive mesh error were introduced. Then, the equations of motion of the system were solved with the Newmark numerical integration method, and the dynamic transmission error and mesh force of the gear pairs were obtained. The influences of different input rotational speeds and power on the dynamic response of the system were analyzed. The dynamic responses of the bearings between the bevel gears, planet carrier, and box were calculated. It was found that the dynamic mesh force gradually decreased with an increase in speed, and it increased with an increase in power. For low-speed and heavy-load transmission systems, the influence of power on the mesh force was more significant. It could also be found that the efficiency of the transmission system composed of a spiral bevel gear and a planetary gear was improved compared with that of the traditional system. Finally, the effectiveness of the dynamic model was validated through a comparison of the test signals. The results of the analysis in this study can be used to guide the design of vibration and noise reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.