Abstract

For data centers with strict requirements on temperature and humidity, this study proposes a combined cooling, heating and power (CCHP) system integrated with methanol-reforming and dehumidification based on proton exchange membrane fuel cells (PEMFCs). The system consists of a methanol-reformer, preferential oxidation (PROX) reactor, PEMFC stack, adsorption chiller, desiccant air conditioning (DAC), and phase change material(PCM) heat storage tank. Taking a data center in Harbin as the research object, the dynamic response characteristics of the system are studied, and the system has good dynamic response characteristics. The CO concentration in the reformed gas is controlled by controlling the O2/CO ratio in the PROX. The CO concentration in the transformation gas can be controlled below 4 ppm. The cooling and dehumidification requirements of the data center are met by controlling the cooling power of the system and the air intake conditions of the data center. The results show that the cooling power of the system rises for 400 s at the beginning of the operation, and stabilizes after about 2 h, and the temperature and relative humidity of the data center can be controlled at 25 °C and 55–63%. The novel system develops an efficient way to recover low-grade waste heat of PEMFC stacks for cooling and dehumidification in data centers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call