Abstract

Cell-cell junctions are composed of a diverse array of specialized proteins that are necessary for the movement and integrity of epithelia. Scaffolding molecules, such as membrane-associated guanylate kinases (MAGUKs) contain multiple protein-protein interaction domains that integrate these proteins into macromolecular complexes at junctions. We have used structure-function experiments to dissect the role of domains of the Caenorhabditis elegans MAGUK DLG-1, a homolog of Drosophila Discs large and vertebrate SAP97. DLG-1 deletion constructs were analyzed in directed yeast two-hybrid tests as well as in vivo in a dlg-1 null mutant background. Our studies identify novel roles for several key domains. First, the L27 domain of DLG-1 mediates the physical interaction of DLG-1 with its binding partner, AJM-1, as well as DLG-1 multimerization. Second, the PDZ domains of DLG-1 mediate its association with the junction. Third, using dynamic in vivo imaging, we demonstrate that the SH3 domain is required for rapid lateral distribution of DLG-1 via a LET-413/Scribble-dependent pathway. Finally, we found that inclusion of the SH3 domain can ameliorate dlg-1 mutant phenotypes, but full rescue of lethality required the complete C terminus, which includes the GUK and Hook domains, thereby demonstrating the importance of the C-terminus for DLG-1 function. Our results represent the first in vivo analysis of requirements for the L27 domain of a Discs-large/SAP97 protein, identify a crucial LET-413/Scribble regulatory motif and provide insight into how MAGUK subdomains function to maintain epithelial integrity during development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.