Abstract
This paper considers existence, uniqueness, and the global asymptotic stability for a class of High-order Hopfield neural networks with mixed delays and impulses. The mixed delays include constant delay in the leakage term (i.e., "leakage delay") and time-varying delays. Based on the Lyapunov stability theory, together with the linear matrix inequality approach and free-weighting matrix method, some less conservative delay-dependent sufficient conditions are presented for the global asymptotic stability of the equilibrium point of the considered neural networks. These conditions are expressed in terms of LMI and can be easily checked by MATLAB LMI toolbox. In addition, two numerical examples are given to illustrate the applicability of the result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.