Abstract

Modern life is marked with the extensive use of machine tools. The latter stand for high consumers of electrical energy which increase carbon emissions. For this reason, various solutions aiming to reduce energy consumption in industrial sector are elaborated. One solution lies in the use of economical materials for the spindle rotation system supported by active magnetic bearings (AMBs), which corresponds to a problem that has never been undertaken so far. A new conception for machine tool spindle rotation system is elaborated for sustainable design. The spindle material is composed of a carbon epoxy hollow shaft wrapped with a steel layer and supported by AMBs. A Finite Element Method (FEM) modeling of the spindle rotation system was carried out to assess its dynamic consumed energy and power during the acceleration and cutting phases. For an accurate estimation, the power consumed by the spindle system was calculated taking into account the dynamic behavior of the cutting force and losses generated by the bearings. A comparison between energies consumed by the proposed spindle system and the steel spindle system was enacted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call