Abstract

Human beings usually absorb a shock from terrain during walking through the damping effects of joints, muscles and skin. With this analogy, a robot-leg with a shock absorber is built to absorb the impact forces at its foot during high-speed walking on irregular terrain. To control the hip position while walking, the dynamic controller suitable for high speed walking is designed and implemented based on a dynamic model by Kane's equation. The hip position tracking performances of various controllers (PID controller, computed torque controller and feedforward torque controller) are compared through the experiments of the real robot-leg.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call