Abstract

Allometric scaling laws critically examine structure-function relationships. In estimating the forest biomass carbon and its response under climate change, the issue of scaling has resulted in difficulties when modelling the biomass for different-sized trees, especially large ones, and has not yet been solved in either theory or practice. Here, we propose the concept of a dynamic allometric scaling relationship between stem biomass and above-ground biomass The allometric curve approaches an asymptote with an increase in tree size. An asymptotic allometric equation is presented that has a better fit to the data than the simple power-law allometric equation. The non-constant exponent is determined by the change in the biomass ratio for different organs and is governed by the dynamic allometric coefficient. This study presents a methodological framework to theoretically characterize allometric relationships and provides new insights in understanding the general scaling pattern and carbon sequestration capacity of large trees across global forests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call