Abstract

The development and automation of Quality of Service (QoS) networks requires efficient algorithms for dynamic resource allocation. The main goal of these algorithms is to provide services that meet the QoS requirements of individual users while ensuring efficient use of network resources. Cloud Radio Access Network (C-RAN) is a future direction in wireless communications to implement cellular radio access subsystems in current 4G, 5G and next generation networks. In the C-RAN architecture, the baseband units (BBUs) reside in a group of virtual base stations connected to the radio remote controllers (RRHs) through a high-bandwidth, low-latency front-haul network. The C-RAN architecture offers significant advantages in terms of centralized resource pooling, network flexibility, and cost savings. In this work, we demonstrate a heterogeneous C-RAN network that implements a dynamic resource allocation algorithm that enables optimal resource utilization in mobile communication networks. The C-RAN network is implemented with OpenStack and uses Docker containers to switch between LTE and GSM systems while the algorithm computes the optimal resources for the highest achievable throughput.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call