Abstract

Abstract An identical twin methodology is applied to a three-dimensional cloud model to study the dynamics of adjustment in deep convective storms. The principal goal is to diagnose how mass and velocity fields mutually adjust in order to better understand the relative information content (value) of observations, the physical interdependency among variables, and to help in the design of dynamically consistent analyses to ensure smooth startup of numerical prediction models. Using a control simulation (“truth” or “nature” run) of an idealized long-lived bow echo convective system, a series of adjustment experiments is created by resetting, in various combinations, the horizontal and vertical velocity components of the control run to their undisturbed base state values during the mature stage of storm system evolution. The integrations then are continued for comparison against the control. This strategy represents a methodology for studying transient response to an impulsive perturbation in a manner conceptually similar to that used in geostrophic and hydrostatic adjustment. The results indicate that resetting both horizontal velocity components alters the character of the convection and slows considerably the overall storm system evolution. In sharp contrast, when only the vertical velocity component is reset, the model quickly restores both updrafts and downdrafts to nearly their correct (control run) values, producing subsequent storm evolution virtually identical to that of the control run. Other combinations yield results in between these two extremes, with the cross-line velocity component proving to be most important in restoration toward the control run. This behavior is explained by acoustic adjustment of the pressure and velocity fields in direct response to changes in velocity divergence forced by the withdrawal of wind information.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call