Abstract

As one of the cellular responses to external mechanical stimulation, it is presumable that the cell adjusts the cytoskeletal mechanical strength globally as well as locally. However, the methodologies to validate this hypothesis are extremely limited and expensive. In this study, a new micro device, utilizing dynamic response of a piezoelectric vibrator, is developed, which works not only to evaluate local mechanical property, but also to enforce local mechanical stimulation onto cultured living adhesive cells. Experimental studies have been carried out by applying actin (the major component of cytoskeleton) polymerization inhibitor, cytochalasin D, to normal human osteoblast. The studies show the present device’s sensing capability to detect changes of mechanical property, induced by external mechanical stimulation, of cultured normal human osteoblast. Also, the method shows that the cellular response against static and dynamic mechanical stimulation differs depending on the condition of actin cytoskeleton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call