Abstract

The soft palate is a key component of the oropharyngeal complex that is critical for swallowing, breathing, hearing and speech. However, complete functional restoration in patients with cleft soft palate remains a challenging task. New insights into the molecular signaling network governing the development of soft palate will help to overcome these clinical challenges. In this study, we investigated whether key signaling pathways required for hard palate development are also involved in soft palate development in mice. We described the dynamic expression patterns of signaling molecules from well-known pathways, such as Wnt, Hh, and Fgf, during the development of the soft palate. We found that Wnt signaling is active throughout the development of soft palate myogenic sites, predominantly in cells of cranial neural crest (CNC) origin neighboring the myogenic cells, suggesting that Wnt signaling may play a significant role in CNC-myogenic cell-cell communication during myogenic differentiation in the soft palate. Hh signaling is abundantly active in early palatal epithelium, some myogenic cells, and the CNC-derived cells adjacent to the myogenic cells. Hh signaling gradually diminishes during the later stages of soft palate development, indicating its involvement mainly in early embryonic soft palate development. Fgf signaling is expressed most prominently in CNC-derived cells in the myogenic sites and persists until later stages of embryonic soft palate development. Collectively, our results highlight a network of Wnt, Hh, and Fgf signaling that may be involved in the development of the soft palate, particularly soft palate myogenesis. These findings provide a foundation for future studies on the functional significance of these signaling pathways individually and collectively in regulating soft palate development.

Highlights

  • The vital functions of the craniofacial region are facilitated by a complex system of “tubes” and “cavities” [1]

  • In order to investigate and characterize the signaling network that controls the interactions between cranial neural crest (CNC)-derived mesenchyme, mesoderm-derived myogenic cells and pharyngeal ectoderm-derived epithelium, our current study focuses on the expression of active Wnt, Hh and Fgf signaling during soft palate development in mice

  • The levator veli palatini (LVP) is located posterior to the tensor veli palatini (TVP), where the greater horns of the hyoid bone (GH) can be observed in histological sections, together with the opening of the Eustachian tube (ET) (Fig 1C)

Read more

Summary

Introduction

The vital functions of the craniofacial region are facilitated by a complex system of “tubes” and “cavities” [1]. Two major cavities of the craniofacial region are divided by the palate, which serves as the floor of the nasal cavity as well as the roof of the oral cavity. The palate itself is a heterogeneous structure with complex developmental origins. The primary palate is formed by the posterior expansion of the frontonasal process, whereas the secondary palate is formed by the fusion of paired palatal shelves [2,3,4].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call