Abstract

Currently, in China’s power grid, the accounting of carbon emissions has shortcomings such as unclear accounting boundaries, slow updating of carbon emission factors (EFs), and a lack of spatiotemporal characteristics. In this study, a dynamic accounting model for carbon emission was constructed based on carbon flow theory and the QIO (Quasi-Input-Output) model using the transmission side, the substation side, and the distribution side as accounting nodes. By utilizing the electricity metering data and carbon EF on the input side of the node, the total carbon emissions flowing into the node could be calculated. Furthermore, based on the electricity metering data on the output side of the node, the carbon emissions and carbon EF flowing out of the node could be calculated. The accounting results of carbon emissions and carbon EF are characterized by flexibility and dynamicity in both spatial and temporal dimensions. Finally, the practicality of the method has been demonstrated through a substation node. The accounting model has a positive impact on accurate carbon emission accounting for the power grid, better tracing of carbon emissions, and effective user guidance on active carbon emission reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.