Abstract

A new abnormal grain growth phenomenon that occurs only during continuous plastic straining, termed dynamic abnormal grain growth (DAGG), was observed in molybdenum (Mo) at elevated temperature. DAGG was produced in two commercial-purity molybdenum sheets and in a commercial-purity molybdenum wire. Single crystals, centimeters in length, were created in these materials through the DAGG process. DAGG was observed only at temperatures of 1713 K (1440 °C) and above and occurred across the range of strain rates investigated, ~10−5 to 10−4 s−1. DAGG initiates only after a critical plastic strain, which decreases with increasing temperature but is insensitive to strain rate. Following initiation of an abnormal grain, the rate of boundary migration during DAGG is on the order of 10 mm/min. This rapid growth provides a convenient means of producing large single crystals in the solid state. When significant normal grain growth occurs prior to DAGG, island grains result. DAGG was observed in sheet materials with two very different primary recrystallization textures. DAGG grains in Mo favor boundary growth along the tensile axis in a 〈110〉 direction, preferentially producing single crystals with orientations from an approximately 〈110〉 fiber family of orientations. A mechanism of boundary unpinning is proposed to explain the dependence of boundary migration on plastic straining during DAGG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call