Abstract

ObjectivesTo demonstrate a procedure for fusing images from cone-beam computed tomography (CBCT), magnetic resonance imaging (MRI) and optical positioning tracking system to dynamically evaluate the relative motion of the temporomandibular joint (TMJ) for the diagnosis of temporomandibular disorders (TMD). MethodsCBCT data was collected from a patient wearing a fixation device with markers in the intercuspal position. The patient's mandibular movements were recorded using an optical positioning tracking system. The CBCT data were imported into a virtual simulation system to reproduce the mandibular movement. Five jaw positions were selected for 3D printing of the occlusal plate that the patient wore to undergo MRI. MRI scans were registered with the CBCT image for fusion and reconstruction. ResultsThe anatomical structures of the articular fossa, articular disc, and condyle were clearly displayed in the CBCT-MRI fused images. The spatial posture and relative position of the fossa-disc-condyle during mandibular movement could be reproduced dynamically using the 3D reconstruction model. ConclusionsThis method can visually display mandibular motion trajectories and the relative TMJ positions. Virtual reproduction provides a comprehensive understanding of the articular disc's morphology and position in different states from a 3D perspective. Clinical SignificanceThis method can be used in clinical studies of TMJ as an adjunct to the 3D dynamic diagnosis and assessment for complex patients with TMD and provide relevant data for doctors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.