Abstract
Herpes simplex virus type 1 (HSV-1) is a large, neurotropic, double-stranded DNA virus that establishes a lifelong latent infection in neurons and glial cells. Previous studies reveal that several metabolic perturbations are associated with HSV-1 infection. However, the extracellular metabolic alterations associated with HSV-1 infection have not been systematically profiled in human cells. Here, a proton nuclear magnetic resonance-based metabonomic approach was applied to differentiate the extracellular metabonomic profiles of HSV-1 infected human oligodendroglia cells (n = 18) and matched control cells (n = 18) at three time points (12, 24, and 36 h post-infection). Resulting spectra were analyzed by chemometric and statistical methods. Metabonomic profiling revealed perturbations in 21 extracellular metabolites. Partial least squares discriminant analysis demonstrated that the whole metabolic patterns enabled statistical discrimination between HSV-1 infected human oligodendroglia cells and control cells. Eight extracellular metabolites, seven of which were amino acids, were primarily responsible for score plot discrimination between HSV-1 infected human oligodendroglia cells and control cells at 36 h post-infection: alanine, glycine, isoleucine, leucine, glutamate, glutamine, histidine, and lactate. HSV-1 infection alters amino acid metabolism in human oligodendroglia cells cultured in vitro. HSV-1 infection may disturb these host cellular pathways to support viral replication. Through elucidating the extracellular metabolic changes incident to HSV-1 infection, this study also provides future directions for investigation into the pathogenic mechanism of HSV-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.