Abstract

The dye-sensitized solar cell (DSSC) devices using polymer electrolytes based on electrospun poly(vinylidene fluoride-hexafluoro propylene) (PVDF-HFP) nanofibers were fabricated and investigated the photovoltaic performances. The electrospun PVDF-HFP nanofibers were prepared by various parameters such as; polymer concentrations, applied voltages, and tip to collector distances (TCD) by the electrospinning method. The open circuit voltage (V(OC)), short circuit current (J(SC)), fill factor (FF), and overall power conversion efficiency (eta) of DSSC devices using electro-spun PVDF-HFP nanofibers were 0.7180-0.7420 V, 9.7200-10.8837 mA/cm2, 0.5610-0.6250, and 4.1700-5.0186%, respectively. When 15 wt% of polymer concentration, 14 kV of applied voltage, and 14 cm of TCD is applied to fabricate the PVDF-HFP nanofiber, the electrospun PVDF-HFP nanofiber should be the regular diameter of a nanofiber, the power conversion efficiency of the DSSC device reached 5.0186% as the best result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.