Abstract

Nanostructured high band-gap oxide semiconductor ceramics are extensively investigated to understand their unique properties and applications in dye-sensitized solar cells, sensors, supercapacitors and other electronic and electrochemical devices. The unusual properties of these materials originate from large surface-area to bulk-volume ratio, quantum size effects and formation of space charge layers of dimensions comparable to the crystallite size in depletion of carriers. A prototype device demonstrating the unique properties of nanostructured semiconductor ceramics is the dye-sensitized solar cell. The original version of this device is based on TiO2 and other familiar stable oxides SnO2 and ZnO yield lower efficiencies owing to faster recombination. SnO2 admits faster electron transport because of the lower effective electron mass, but the same property enhances recombination. Ultra-thin barrier layers insulating stannates coated over the SnO2 crystallites by glazing with alkaline earth chlorides increases the efficiency from ∼1 to 6.6%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.