Abstract

We report the successful application of reduced graphene oxide–titania (rGO–TiO2) nanocomposite as an efficient photoelectrode and an inexpensive polyaniline (PANI) synthesized by in-situ polymerization on graphite foam as a platinum substitute for tri-iodide reduction for dye‐sensitized solar cell (DSC). The bulk carrier concentration and conductivity of the PANI was measured to be 3.02x1017cm-3 and 4.89x10-1 W-1cm-1 respectively. Subsequently, three DSCs were assembled with rGO–TiO2 nanocomposite photoelectrode and PANI as counter electrode for one and the other two assembled using unmodified TiO2 photoelectrode with PANI and platinum as counter electrodes, respectively. The rGO loading allows more dye to be adsorbed due its large surface area thus improving the light harvesting efficiency (LHE). This improvement in LHE increases the short circuit current density (JSC). The JSC increase is more substantial compared to the reduction in VOC; thus, the increase in the efficiency of the cell with rGO-TiO2 nanocomposite electrode. The short circuit current density for the rGO-TiO2 DSC with PANI counter electrode is 0.45mAcm-2 while that for the unmodified TiO2 DSCs with PANI counter electrode and platinum counter electrode are 0.11mAcm-2 and 0.10 mAcm-2 respectively. This corresponds to 76% increase in the current density and it increases collection rate at the photoelectrode leading to enhanced power conversion efficiency of 0.13% compared with 0.04% and 0.02% for the DSCs assembled with unmodified TiO2 under full sunlight illumination (100 mW/cm2, AM 1.5G) as a result of the better charge collection efficiency of rGO, which reduces the back electron transfer process. This represent 69% enhancement of energy conversion efficiency in the DSC consisting of rGO modified TiO2

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call