Abstract

Dye-sensitized system holds great potential for the development of visible-light-responsive photocatalysts not only because it can enhance the light absorption and charge separation efficiency of the systems but also because it can tune the band structure of catalysts. Herein, two-dimensional (2D) Fe-MOF nanosheets (Fe-MNS) with a LUMO potential of 0.11 V (vs. RHE) was prepared. Interestingly, it has been found that when the 2D Fe-MNS catalyst was functionalized with visible-light-responsive [Ru(bpy)]32+ as a dye-sensitizer, the electrons from the [Ru(bpy)]32+ can effectively inject into the 2D Fe-MNS, which resulted in a negative shift of the LUMO potential of the 2D Fe-MNS to −0.15 V (vs. RHE). Consequently, the [Ru(bpy)]32+/Fe-MNS catalytic system exhibits a sound photocatalytic CO2-to-CO activity of 1120 μmol g-1h−1 under visible-light-irradiation. The photocatalytic CO production was further ameliorated by regulating the electronic structure of the 2D Fe-MNS by doping Co ions, achieving a remarkable photocatalytic activity of 1637 μmol g-1h−1. This work further supports that the dye-sensitized system is an auspicious strategy worth exploring with different catalysts for the development of visible-light-responsive photocatalytic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.