Abstract
Carbon dots (C-dots) are fluorescent nanomaterials, exhibiting excellent structure-dependent optical properties for various types of optical and electrical applications. Although many precursors were used for C-dots production, it is still a challenge to produce high-quality C-dots using environmentally-friendly natural precursors. In this work, multiple-colored colloidal C-dots were synthesized via a heating reaction using natural plant dyes as precursors, for example, Indigo, Carcuma longa, and Sophora japonica L. The as-prepared C-dots have absorption in the UV range of 220 to 450 nm with the typical emission ranging from 350 to 600 nm. The as-obtained C-dots have a quantum yield as high as 3.8% in an aqueous solution. As a proof-of-concept, we used the as-prepared C-dots as fluorescence inks for textile secure printing. The printed patterns are almost invisible under daylight and have distinct and clear patterns under 365 and 395 nm light, proving the great potential in optical anti-counterfeiting. This work demonstrates the advanced strategy for high-performance C-dots production from natural dyes and their potential application in flexible secure printing systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.