Abstract

Temperature is an important physical parameter and plays a significant role in scientific research, the detection of which cannot be too crucial to study. In order to reduce the interference of the external environment on the detection of temperature and improve the accuracy of the detection results, a multi-parameter detection method using several optical signals was proposed. Here, a novel porous metal-organic framework (MOF), Zn-CYMPN, was synthesized and structurally characterized. Then, fluorescent organic dyes, either DPEE or DPEM, were encapsulated into the pores of Zn-CYMPN independently. The successful synthesis of the composites Zn-CYMPN⊃DPEE or Zn-CYMPN⊃DPEM could easily introduce other fluorescent centers into the original material and made it more convenient to realize multi-parameter temperature detection. More specifically, when the temperature changed, the maximum fluorescent emission wavelength (W) and the maximum optical intensity (I) of the Zn-CYMPN⊃DPEE/DPEM both showed good linear responses with temperature over a wide range, indicating that the composites were highly sensitive thermometers with multi-parameter temperature readouts. In addition, the quantum efficiency and thermal stability of the organic dyes, which bother every researcher, were improved as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call