Abstract

Microporous poly(2-hydroxyethyl methacrylate) (PHEMA) membranes were prepared by UV-initiated photopolymerization of HEMA in the presence of an initiator (α,α′-azobisisobutyronitrile, AIBN). An affinity dye Cibacron Blue F3GA (CB) was attached covalently and then Fe3+ ions incorporated. The PHEMA-CB and PHEMA-CB-Fe3+ membranes derived were used for adsorption of glucose oxidase (GOD). The adsorption capacities of these membranes were determined under conditions of different pH and with different concentrations of the adsorbate in the medium. The adsorption phenomena appeared to follow a typical Langmuir isotherm. The glucose oxidase adsorption capacity of the Fe3+ incorporated membrane (87μgcm-2) was greater than that of the dye-derived membrane (66μgcm-2). Non-specific adsorption of the glucose oxidase on the PHEMA membranes was negligible. The Km values for both immobilized glucose oxidase PHEMA-CB-GOD (8·3) and PHEMA-CB-Fe3+-GOD (7·6) were higher than that of the free enzyme (6·2mM). Optimum reaction pH was 5·5 for the free and 6·0 for both immobilized preparations. The optimum reaction temperature of the adsorbed enzymes was 5°C higher than that of the free enzyme and was significantly broader. After 15 successive uses the retained activity of the adsorbed enzyme was 87%. It was observed that enzymes could be repeatedly adsorbed and desorbed on the derived PHEMA membranes without significant loss in adsorption capacity or enzymic activity. © 1998 SCI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.